Updating search results...

Search Resources

10 Results

View
Selected filters:
  • linear-regression
Intermediate Statistics with R
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Introductory statistics courses prepare students to think statistically but cover relatively few statistical methods. Building on the basic statistical thinking emphasized in an introductory course, a second course in statistics at the undergraduate level can explore a large number of statistical methods. This text covers more advanced graphical summaries, One-Way ANOVA with pair-wise comparisons, Two-Way ANOVA, Chi-square testing, and simple and multiple linear regression models. Models with interactions are discussed in the Two-Way ANOVA and multiple linear regression setting with categorical explanatory variables. Randomization-based inferences are used to introduce new parametric distributions and to enhance understanding of what evidence against the null hypothesis “looks like”. Throughout, the use of the statistical software R via Rstudio is emphasized with all useful code and data sets provided within the text. This is Version 3.0 of the book.

Subject:
Mathematics
Statistics and Probability
Material Type:
Textbook
Provider:
Montana State University
Author:
Mark C. Greenwood
Date Added:
11/18/2021
Introduction to Statistics in the Psychological Sciences
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Psychology students often find statistics courses to be different from their other psychology classes. There are some distinct differences, especially involving study strategies for class success. The first difference is learning a new vocabulary—it is similar to learning a new language. Knowing the meaning of certain words will help as you are reading the material and working through the problems. Secondly, practice is critical for success; reading over the material is not enough. Statistics is a subject learned by doing, so make sure you work through any homework questions, chapter questions, and practice problems available. Lastly, we recommend that you ask questions and get help from your instructor when needed. Struggling with the course material can be frustrating, and frustration is your enemy. Often your instructor can get you back on track quickly.

Subject:
Mathematics
Psychology
Social Science
Statistics and Probability
Material Type:
Textbook
Provider:
University of Missouri St. Louis
Author:
Chrislyn E. Randell
Helena Marvin
Judy Schmitt
Linda R. Cote
Marvin Helena
Rupa Gordon
Date Added:
01/25/2022
Lies, Damned Lies, or Statistics: How to Tell the Truth with Statistics
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This is a first draft of a free (as in speech, not as in beer, [Sta02]) (although it is free as in beer as well) textbook for a one-semester, undergraduate statistics course. It was used for Math 156 at Colorado State University–Pueblo in the spring semester of 2017.

Subject:
Mathematics
Statistics and Probability
Material Type:
Textbook
Author:
Jonathan A. Poritz
Date Added:
12/05/2019
Linear Regression Using R: An Introduction to Data Modeling
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Linear Regression Using R: An Introduction to Data Modeling presents one of the fundamental data modeling techniques in an informal tutorial style. Learn how to predict system outputs from measured data using a detailed step-by-step process to develop, train, and test reliable regression models. Key modeling and programming concepts are intuitively described using the R programming language. All of the necessary resources are freely available online.

Subject:
Mathematics
Material Type:
Textbook
Provider:
Minnesota Libraries Publishing Project
Author:
David Lilja
Date Added:
06/15/2019
Natural Resources Biometrics
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Natural Resources Biometrics begins with a review of descriptive statistics, estimation, and hypothesis testing. The following chapters cover one- and two-way analysis of variance (ANOVA), including multiple comparison methods and interaction assessment, with a strong emphasis on application and interpretation. Simple and multiple linear regressions in a natural resource setting are covered in the next chapters, focusing on correlation, model fitting, residual analysis, and confidence and prediction intervals. The final chapters cover growth and yield models, volume and biomass equations, site index curves, competition indices, importance values, and measures of species diversity, association, and community similarity.

Subject:
Mathematics
Statistics and Probability
Material Type:
Textbook
Provider:
State University of New York
Provider Set:
Milne Open Textbooks
Author:
Diane Kiernan
Date Added:
01/16/2014
OpenIntro Statistics
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

OpenIntro Statistics strives to be a complete introductory textbook of the highest caliber. Its core derives from the classic notions of statistics education and is extended by recent innovations. The textbook meets high quality standards and has been used at Princeton, Vanderbilt, UMass Amherst, and many other schools. We look forward to expanding the reach of the project and working with teachers from all colleges and schools.

Subject:
Mathematics
Statistics and Probability
Material Type:
Textbook
Provider:
OpenIntro
Author:
Christopher Barr
David Diez
Mine Cetinkaya-Rundel
Date Added:
01/01/2011
Principles of Business Statistics
Unrestricted Use
CC BY
Rating
0.0 stars

You are probably asking yourself the question, "When and where will I use statistics?". If you read any newspaper or watch television, or use the Internet, you will see statistical information. There are statistics about crime, sports, education, politics, and real estate. Typically, when you read a newspaper article or watch a news program on television, you are given sample information. With this information, you may make a decision about the correctness of a statement, claim, or "fact." Statistical methods can help you make the "best educated guess."

Subject:
Mathematics
Statistics and Probability
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax CNX
Author:
Mihai Nica
Date Added:
12/05/2019
Statistics Course Content
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Introductory statistics course developed through the Ohio Department of Higher Education OER Innovation Grant. The course is part of the Ohio Transfer Module and is also named TMM010. For more information about credit transfer between Ohio colleges and universities please visit: www.ohiohighered.org/transfer.Team LeadKameswarrao Casukhela                     Ohio State University – LimaContent ContributorsEmily Dennett                                       Central Ohio Technical CollegeSara Rollo                                            North Central State CollegeNicholas Shay                                      Central Ohio Technical CollegeChan Siriphokha                                   Clark State Community CollegeLibrarianJoy Gao                                                Ohio Wesleyan UniversityReview TeamAlice Taylor                                           University of Rio GrandeJim Cottrill                                             Ohio Dominican University

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
Ohio Open Ed Collaborative
Date Added:
11/05/2020
Statistics Course Content, Correlation and Simple Linear Regression, Correlation and Simple Linear Regression
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Sometimes it is difficult to measure or find information on a variable of interest. The problem then is to use information from easily measurable variables to find the needed information. Naturally, the variables to use must be related to the variable of interest. In this module we will study about relationships between two quantitative variables. We will explore some standard mathematical (linear, quadratic, cubic, etc.) forms of relationships.Learning Objectives:Identify response and explanatory variablesGiven bivariate data make a scatterplot of data and predict the pattern and strength of the relationship between the variablesLinear relationshipDefine correlation, study its properties and use themFind correlation for a bivariate data and interpret the resultsInterpret the square of the correlationTest for the significance of correlation – set up hypothesis and interpret the p-value of the testLinear relationship – Estimate the linear relationship between the two variables.Interpret slope and intercept.Interpret the square of the correlationStudy residuals and residual plots,Distinguish between the terms correlation and causationTest for the significance of the slope coefficient – set up hypothesis and interpret the p-value of the test.Study quadratic and other non-linear models.Textbook Material -  Chapter 12 – Correlation and Regression – Pages 673 - 699

Subject:
Statistics and Probability
Material Type:
Module
Author:
Ohio Open Ed Collaborative
Date Added:
11/05/2020