Psychology students often find statistics courses to be different from their other …
Psychology students often find statistics courses to be different from their other psychology classes. There are some distinct differences, especially involving study strategies for class success. The first difference is learning a new vocabulary—it is similar to learning a new language. Knowing the meaning of certain words will help as you are reading the material and working through the problems. Secondly, practice is critical for success; reading over the material is not enough. Statistics is a subject learned by doing, so make sure you work through any homework questions, chapter questions, and practice problems available. Lastly, we recommend that you ask questions and get help from your instructor when needed. Struggling with the course material can be frustrating, and frustration is your enemy. Often your instructor can get you back on track quickly.
Introductory statistics course developed through the Ohio Department of Higher Education OER …
Introductory statistics course developed through the Ohio Department of Higher Education OER Innovation Grant. The course is part of the Ohio Transfer Module and is also named TMM010. For more information about credit transfer between Ohio colleges and universities please visit: www.ohiohighered.org/transfer.Team LeadKameswarrao Casukhela Ohio State University – LimaContent ContributorsEmily Dennett Central Ohio Technical CollegeSara Rollo North Central State CollegeNicholas Shay Central Ohio Technical CollegeChan Siriphokha Clark State Community CollegeLibrarianJoy Gao Ohio Wesleyan UniversityReview TeamAlice Taylor University of Rio GrandeJim Cottrill Ohio Dominican University
A data set is a listing of variables and their observed values …
A data set is a listing of variables and their observed values on individuals or objects of study. In this topic we will learn about numerical summaries of data on a single variable and learn how to use them to describe data distribution and determine unusual values in the data. The type of numerical summaries to use depend on the data. We will also learn about boxplots.Learning Objectives:Understand which numerical summaries must be used to represent dataBe able to compute and interpret them. Also, know their properties and relative advantages and disadvantages. Further, use these measures to describe distributions, compare values from distributions, detect unusual values in the data, etc.For categorical data use counts and proportions to describe categoriesFor quantitative data useMeasures of Center – Mean, Median, ModeMeasure of Spread – Range, Interquartile Range (IQR), Variance and Standard DeviationMeasures of Location – Minimum, Maximum, Quartiles and PercentilesLearn to distinguish between different types of distributions for quantitative data – symmetric, skewed, bell-shaped, multimodal distributionsLearn about Empirical Rule for bell-shaped distributionsUse z-scores to compare values and detect unusual valuesMake boxplot of dataTextbook Material: Chapter 2 – Descriptive Statistics – Pages 88 - 122Suggested HomeworkChapter 2 - Descriptive Statistics – 29, 31, 32, 43, 57, 60, 69, 71, 82, 84, 86, 88, 89, 104, 106, 108, 109, 115, 119
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.