Search Resources

53 Results

View
Selected filters:
  • Physics
The Adventure of Physics - Vol. I: Fall, Flow, and Heat
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and space move leads to many adventures. This volume presents the best of them in the domain of everyday life.

Carefully observing everyday motion allows us to deduce six essential statements: everyday motion is continuous, conserved, relative, reversible, mirror-invariant – and lazy. Yes, nature is indeed lazy: in every motion, it minimizes change. This text explores how these six results are deduced and how they fit with all those observations that seem to contradict them. In the structure of modern physics, shown in Figure 1, the results on everyday motion form the major part of the starting point at the bottom. The present volume is the first of a six-volume overview of physics. It resulted from a threefold aim I have pursued since 1990: to present motion in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Reading a book on general physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one surprise or provocation for the reader to think about. Numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clarifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
12/05/2019
The Adventure of Physics - Vol. III: Light, Charges, and Brains
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and empty space move leads to many adven- tures. This volume presents the best of them in the domains of relativity and cosmology. In the study of motion – physics – special and general relativity form two important building blocks.

Special relativity is the exploration of the energy speed limit c. General relativity is the exploration of the force limit c4/4G. The text shows that in both domains, all equations follow from these two limit values. This simple, intuitive and unusual way of learning relativity should reward the curiosity of every reader – whether student or professional.

The present volume is the second of a six-volume overview of physics that arose from a threefold aim that I have pursued since 1990: to present motion in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Read- ing a book on general physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one surprise or provocation for the reader to think about. Numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clar- ifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
12/05/2019
The Adventure of Physics - Vol. II: Relativity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and empty space move leads to many adventures. This volume presents the best of them in the domains of relativity and cosmology. In the study of motion – physics – special and general relativity form two important building blocks.

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
12/05/2019
The Adventure of Physics - Vol. IV: The Quantum of Change
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This book is written for anybody who is curious about nature and motion. Have you ever asked: Why do people, animals, things, images and space move? The answer leads to many adventures; this volume presents those due to the discovery that there is a smallest change value in nature. This smallest change value, the quantum of action, leads to what is called quantum physics. In the structure of modern physics, quantum physics covers three points; this volume covers the introduction to the point in the lower right: the foundations of quantum theory.

The present introduction to quantum physics arose from a threefold aim I have pur- sued since 1990: to present the basics of motion in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Read- ing a book on general physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one surprise or provocation for the reader to think about. Numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clar- ifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
12/05/2019
The Adventure of Physics - Vol. VI: The Strand Model - A Speculation on Unification
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This book is written for anybody who is intensely curious about nature and motion. Have you ever asked: Why do people, animals, things, images and empty space move? The answer leads to many adventures, and this book presents one of the best of them: the search for a precise, unified and final description of all motion.

The wish to describe all motion is a large endeavour. Fortunately, this large endeavour can be structured in the simple diagram shown in Figure 1. The final and unified description of motion, the topic of this book, corresponds to the highest point in the diagram. Searching for this final and unified description is an old quest. In the following, I briefly summarize its history and then present an intriguing, though speculative solution to the riddle.

The search for the final, unified description of motion is a story of many surprises. For example, twentieth-century research has shown that there is a smallest distance in nature. Research has also shown that matter cannot be distinguished from empty space at those small distances. A last surprise dates from this century: particles and space are best described as made of strands, instead of little spheres or points. The present text explains how to reach these unexpected conclusions. In particular, quantum field theory, the standard model of particle physics, general relativity and cosmology are shown to follow from strands. The three gauge interactions, the three particle generations and the three dimensions of space turn out to be due to strands. In fact, all the open questions of twentieth-century physics about the foundations of motion, all the millennium issues, can be solved with the help of strands.

The strand model, as presented in this text, is an unexpected result from a threefold aim that I have pursued since 1990, in the five previous volumes of this series: to present the basics of motion in a way that is up to date, captivating and simple. In retrospect, the aim for maximum simplicity has been central in deducing this speculation. While the previous volumes introduced, in an entertaining way, the established parts of physics, this volume presents, in the same entertaining and playful way, a speculation about unification. Nothing in this volume is established knowledge – yet. The text is the original presentation of the topic.

The search for a final theory is one of the great adventures of life: it leads to the limits of thought. The search overthrows our thinking habits about nature. A change in thinking habits can produce fear, often hidden by anger. But by overcoming our fears we gain strength and serenity. Changing thinking habits thus requires courage, but it also produces intense and beautiful emotions. Enjoy them!

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
12/05/2019
The Adventure of Physics - Vol. V: Motion Inside Matter - Pleasure, Technology, and Stars
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This book is written for anybody who is curious about nature and motion. Curiosity about how bodies, images and empty space move leads to many adventures. This volume presents the best adventures about the motion inside people, inside animals, and inside any other type of matter – from the largest stars to the smallest nuclei.

Motion inside bodies – dead or alive – is described by quantum theory. Quantum theory describes all motion with the quantum of action h, the smallest change observed in nature. Building on this basic idea, the text first shows how to describe life, death and pleasure. Then, the text explains the observations of chemistry, materials science, astrophysics and particle physics. In the structure of physics, these topics correspond to the three ‘quantum’ points in Figure 1. The story of motion inside living and non-living matter, from the coldest gases to the hottest stars, is told here in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Read- ing a book on physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one sur- prise that makes the reader think. Also numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clar- ifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
12/05/2019
Applications of Maxwell's Equations
Unrestricted Use
CC BY
Rating

This book was developed at Simon Fraser University for an upper-level physics course. Along with a careful exposition of electricity and magnetism, it devotes a chapter to ferromagnets. According to the course description, the topics covered were “electromagnetics, magnetostatics, waves, transmission lines, wave guides,antennas, and radiating systems.”

Subject:
Physics
Material Type:
Textbook
Provider:
Simon Fraser University
Author:
Bretislav Heinrich
Jon Fraser
Date Added:
11/18/2021
Basics of Fluid Mechanics
Read the Fine Print
Some Rights Reserved
Rating

Fluid mechanics deals with the study of all fluids under static and dynamic situations. Fluid mechanics is a branch of continuous mechanics which deals with a relationship between forces, motions, and statical conditions in a continuous material. This study area deals with many and diversified problems such as surface tension, fluid statics, flow in enclose bodies, or flow round bodies (solid or otherwise), flow stability, etc. In fact, almost any action a person is doing involves some kind of a fluid mechanics problem. Furthermore, the boundary between the solid mechanics and fluid mechanics is some kind of gray shed and not a sharp distinction (see Figure 1.1 for the complex relationships between the different branches which only part of it should be drawn in the same time.). For example, glass appears as a solid material, but a closer look reveals that the glass is a liquid with a large viscosity. A proof of the glass ``liquidity'' is the change of the glass thickness in high windows in European Churches after hundred years. The bottom part of the glass is thicker than the top part. Materials like sand (some call it quick sand) and grains should be treated as liquids. It is known that these materials have the ability to drown people. Even material such as aluminum just below the mushy zone also behaves as a liquid similarly to butter. Furthermore, material particles that "behaves'' as solid mixed with liquid creates a mixture After it was established that the boundaries of fluid mechanics aren't sharp, most of the discussion in this book is limited to simple and (mostly) Newtonian (sometimes power fluids) fluids which will be defined later.

This book describes the fundamentals fluid mechanics phenomena for engineers and others. It is designed to replace all introductory textbook(s) or instructor's notes for the fluid mechanics in undergraduate classes for engineering/science students but also for technical peoples. It is hoped that the book could be used as a reference book for people who have at least some basics knowledge of science areas such as calculus, physics, etc.

Subject:
Engineering
Physics
Material Type:
Textbook
Provider:
Potto Project
Author:
Genick Bar–MeirPh. D.
Date Added:
01/01/2011
Body Physics: Motion to Metabolism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Body Physics was designed to meet the objectives of a one-term high school or freshman level course in physical science, typically designed to provide non-science majors and undeclared students with exposure to the most basic principles in physics while fulfilling a science-with-lab core requirement. The content level is aimed at students taking their first college science course, whether or not they are planning to major in science. However, with minor supplementation by other resources, such as OpenStax College Physics, this textbook could easily be used as the primary resource in 200-level introductory courses. Chapters that may be more appropriate for physics courses than for general science courses are noted with an asterisk symbol (*). Of course, this textbook could be used to supplement other primary resources in any physics course covering mechanics and thermodynamics.

Table of Contents
Unit 1: Purpose and Preparation
Unit 2: Measuring the Body
Unit 3: Error in Body Composition Measurement
Unit 4: Better Body Composition Measurement
Unit 5: Maintaining Balance
Unit 6: Forces within the Body
Unit 7: Strength and Elasticity of the Body
Unit 8: Skydiving
Unit 9: Injury and Injury Prevention
Unit 10: Body Energy
Unit 11: Body Heat and The Fight for Life

Subject:
Physics
Material Type:
Textbook
Provider:
OpenOregon
Author:
Lawrence Davis
Date Added:
12/08/2020
Body Physics: Motion to Metabolism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Body Physics was designed to meet the objectives of a one-term high school or freshman level course in physical science, typically designed to provide non-science majors and undeclared students with exposure to the most basic principles in physics while fulfilling a science-with-lab core requirement. The content level is aimed at students taking their first college science course, whether or not they are planning to major in science. However, with minor supplementation by other resources, such as OpenStax College Physics, this textbook could easily be used as the primary resource in 200-level introductory courses. Chapters that may be more appropriate for physics courses than for general science courses are noted with an asterisk symbol (*). Of course, this textbook could be used to supplement other primary resources in any physics course covering mechanics and thermodynamics.

Subject:
Physics
Material Type:
Textbook
Provider:
OpenOregon
Author:
Lawrence Davis
Date Added:
06/15/2019
Calculus-Based Physics I
Conditional Remix & Share Permitted
CC BY-SA
Rating

Calculus-Based Physics is an introductory physics textbook designed for use in the two-semester introductory physics course typically taken by science and engineering students.

Subject:
Calculus
Physics
Material Type:
Textbook
Provider:
Saint Anselm College
Author:
Jeffrey Schnick
Date Added:
12/05/2019
Calculus-Based Physics I
Conditional Remix & Share Permitted
CC BY-SA
Rating

Calculus-Based Physics is an introductory physics textbook designed for use in the two-semester introductory physics course typically taken by science and engineering students.

Table of Contents
1 Mathematical Prelude
2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy
3 Conservation of Mechanical Energy II: Springs, Rotational Kinetic Energy
4 Conservation of Momentum
5 Conservation of Angular Momentum
6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics
7 One-Dimensional Motion: The Constant Acceleration Equations
8 One-Dimensional Motion: Collision Type II
9 One-Dimensional Motion Graphs
10 Constant Acceleration Problems in Two Dimensions
11 Relative Velocity
12 Gravitational Force Near the Surface of the Earth, First Brush with Newton's 2nd Law
13 Freefall, a.k.a. Projectile Motion
14 Newton's Laws #1: Using Free Body Diagrams
15 Newton's Laws #2: Kinds of Forces, Creating Free Body Diagrams
16 Newton's Laws #3: Components, Friction, Ramps, Pulleys, and Strings
17 The Universal Law of Gravitation
18 Circular Motion: Centripetal Acceleration
19 Rotational Motion Variables, Tangential Acceleration, Constant Angular Acceleration
20 Torque & Circular Motion
21 Vectors: The Cross Product & Torque
22 Center of Mass, Moment of Inertia
23 Statics
24 Work and Energy
25 Potential Energy, Conservation of Energy, Power
26 Impulse and Momentum
27 Oscillations: Introduction, Mass on a Spring
28 Oscillations: The Simple Pendulum, Energy in Simple Harmonic Motion
29 Waves: Characteristics, Types, Energy
30 Wave Function, Interference, Standing Waves
31 Strings, Air Columns
32 Beats, The Doppler Effect
33 Fluids: Pressure, Density, Archimedes' Principle
34 Pascal's Principle, the Continuity Equation, and Bernoulli's Principle
35 Temperature, Internal Energy, Heat, and Specific Heat Capacity
36 Heat: Phase Changes
37 The First Law of Thermodynamics

Reviews available here: https://open.umn.edu/opentextbooks/textbooks/calculus-based-physics-i

Subject:
Physics
Material Type:
Textbook
Provider:
BCcampus
Provider Set:
BCcampus Faculty Reviewed Open Textbooks
Author:
Jeffrey W. Schnick
Date Added:
10/28/2014
Calculus-Based Physics II
Conditional Remix & Share Permitted
CC BY-SA
Rating

A free, two-volume, on-line, editable, introductory calculus based physics textbook in PDF™ and Microsoft Word™ format. Also provides ancillary materials including video solutions to physics problems and Blackboard™ quizzes with extensive feedback.

Subject:
Physics
Material Type:
Textbook
Provider:
Saint Anselm College
Author:
Jeffrey Schnick
Date Added:
11/19/2005
Calculus-Based Physics II
Conditional Remix & Share Permitted
CC BY-SA
Rating

Calculus-Based Physics is an introductory physics textbook designed for use in the two-semester introductory physics course typically taken by science and engineering students.

Table of Contents
1 Charge & Coulomb's Law
2 The Electric Field: Description and Effect
3 The Electric Field Due to one or more Point Charges
4 Conductors and the Electric Field
5 Work Done by the Electric Field, and, the Electric Potential
6 The Electric Potential Due to One or More Point Charges
7 Equipotential Surfaces, Conductors, and Voltage
8 Capacitors, Dielectrics, and Energy in Capacitors
9 Electric Current, EMF, Ohm's Law
10 Resistors in Series and Parallel; Measuring I & V
11 Resistivity, Power
12 Kirchhoff's Rules, Terminal Voltage
13 RC Circuits
14 Capacitors in Series & Parallel
15 Magnetic Field Intro: Effects
16 Magnetic Field: More Effects
17 Magnetic Field: Causes
18 Faraday's Law, Lenz's Law
19 Induction, Transformers, and Generators
20 Faraday's Law and Maxwell's Extension to Ampere's Law
21 The Nature of Electromagnetic Waves
22 Huygens's Principle and 2-Slit Interference
23 Single-Slit Diffraction
24 Thin Film Interference
25 Polarization
26 Geometric Optics, Reflection
27 Refraction, Dispersion, Internal Reflection
28 Thin Lenses: Ray Tracing
29 Thin Lenses: Lens Equation, Optical Power
30 The Electric Field Due to a Continuous Distribution of Charge on a Line
31 The Electric Potential due to a Continuous Charge Distribution
32 Calculating the Electric Field from the Electric Potential
33 Gauss's Law
34 Gauss's Law Example
35 Gauss's Law for the Magnetic Field, and, Ampere's Law Revisited
36 The Biot-Savart Law
37 Maxwell's Equations

Subject:
Physics
Material Type:
Textbook
Author:
Jeffrey Schnick
Date Added:
12/08/2020
College Physics
Unrestricted Use
CC BY
Rating

This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems.

Subject:
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Kim Dirks
Manjula Sharma
Paul Peter Urone
Roger Hinrichs
Date Added:
01/23/2012
College Physics for AP Courses
Unrestricted Use
CC BY
Rating

College Physics for AP Courses is designed to engage students in their exploration of physics and help them to relate what they learn in the classroom to their lives and to apply these concepts to the Advanced Placement test. Physics underlies much of what is happening today in other sciences and in technology, therefore the book includes interesting facts and ideas that go beyond the scope of the AP course to further student understanding. The AP Connection in each chapter directs students to the material they should focus on for the AP® exam, and what content — although interesting — is not necessarily part of the AP curriculum.

Subject:
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
David Anderson
Douglas Ingram
Gregg Wolfe
Irna Lyublinskaya
John Stoke
Julie Kretchman
Liza Pujji
Nathan Czuba
Sudhi Oberoi
Date Added:
04/29/2015
Creating Musical Sounds
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

How do different instruments produce the sounds we classify as music? How do we decide whether something - a piano, a vacuum cleaner - is actually a musical instrument? In this unit we investigate the way vibrations and sound waves are harnessed to create music.

Subject:
Performing Arts
Physics
Material Type:
Full Course
Provider:
The Open University
Provider Set:
Open University OpenLearn
Date Added:
06/19/2019
Electromagnetics, Volume 1
Conditional Remix & Share Permitted
CC BY-SA
Rating

Electromagnetics Volume 1 by Steven W. Ellingson is a 225-page, peer-reviewed open educational resource intended for electrical engineering students in the third year of a bachelor of science degree program. It is intended as a primary textbook for a one-semester first course in undergraduate engineering electromagnetics. The book employs the “transmission lines first” approach in which transmission lines are introduced using a lumped-element equivalent circuit model for a differential length of transmission line, leading to one-dimensional wage equations for voltage and current.

Suggested citation: Ellingson, Steven W. (2018) Electromagnetics, Vol. 1. Blacksburg, VA: VT Publishing. https://doi.org/10.21061/electromagnetics-vol-1 CC BY-SA 4.0

Three formats of this book are available:
Print (ISBN 978-0-9979201-8-5)
PDF (ISBN 978-0-9979201-9-2)
LaTeX source files

If you are a professor reviewing, adopting, or adapting this textbook please help us understand a little more about your use by filling out this form: http://bit.ly/vtpublishing-updates

Additional Resources
Problem sets and the corresponding solution manual are also available.
Community portal for the Electromagnetics series https://www.oercommons.org/groups/electromagnetics-user-group/3455/
Faculty listserv for the Electromagnetics series https://groups.google.com/a/vt.edu/d/forum/electromagnetics-g
Submit feedback and suggestions http://bit.ly/electromagnetics-suggestion

Table of Contents:
Chapter 1: Preliminary Concepts
Chapter 2: Electric and Magnetic Fields
Chapter 3: Transmission Lines
Chapter 4: Vector Analysis
Chapter 5: Electrostatics
Chapter 6: Steady Current and Conductivity
Chapter 7: Magnetostatics
Chapter 8: Time-Varying Fields
Chapter 9: Plane Waves in Lossless Media
Appendixes
A. Constitutive Parameters of Some Common Materials
B. Mathematical Formulas
C. Physical Constants

About the Author: Steven W. Ellingson (ellingson@vt.edu) is an Associate Professor at Virginia Tech in Blacksburg, Virginia in the United States. He received PhD and MS degrees in Electrical Engineering from the Ohio State University and a BS in Electrical & Computer Engineering from Clarkson University. He was employed by the US Army, Booz-Allen & Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech, where he teaches courses in electromagnetics, radio frequency systems, wireless communications, and signal processing. His research includes topics in wireless communications, radio science, and radio frequency instrumentation. Professor Ellingson serves as a consultant to industry and government and is the author of Radio Systems Engineering (Cambridge University Press, 2016).

This textbook is part of the Open Electromagnetics Project led by Steven W. Ellingson at Virginia Tech. The goal of the project is to create no-cost openly-licensed content for courses in undergraduate engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources.

Accessibility features of this book: Screen reader friendly, navigation, and Alt-text for all images and figures.

Publication of this book was made possible in part by the Open Education Faculty Initiative Grant program at the University Libraries at Virginia Tech. http://guides.lib.vt.edu/oer/grants

Subject:
Engineering
Physics
Material Type:
Activity/Lab
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
06/15/2019
Electromagnetics, Volume 2
Conditional Remix & Share Permitted
CC BY-SA
Rating

Electromagnetics, volume 2 by Steven W. Ellingson is a 216-page peer-reviewed open textbook designed especially for electrical engineering students in the third year of a bachelor of science degree program. It is intended as the primary textbook for the second semester of a two-semester undergraduate engineering electromagnetics sequence. The book addresses magnetic force and the Biot-Savart law; general and lossy media; parallel plate and rectangular waveguides; parallel wire, microstrip, and coaxial transmission lines; AC current flow and skin depth; reflection and transmission at planar boundaries; fields in parallel plate, parallel wire, and microstrip transmission lines; optical fiber; and radiation and antennas.

Table of Contents:
Chapter 1: Preliminary Concepts
Chapter 2: Magnetostatics Redux
Chapter 3: Wave Propagation in General Media
Chapter 4: Current Flow in Imperfect Conductors
Chapter 5: Wave Reflection and Transmission
Chapter 6: Waveguides
Chapter 7: Transmission Lines Redux
Chapter 8: Optical Fiber
Chapter 9: Radiation
Chapter 10: Antennas
Appendix A: Constitutive Parameters of Some Common Materials
Appendix B: Mathematical Formulas
Appendix C: Physical Constants

Additional Resources
Problem sets and the corresponding solution manuals
Slides of figures used in and created for the book
LaTeX sourcefiles.
Screen-reader friendly version
Errata for Volume 2
Collaborator portal for the Electromagnetics series https://www.oercommons.org/groups/electromagnetics-user-group/3455
Faculty listserv for the Electromagnetics series
Submit feedback and suggestions

The Open Electromagnetics Project https://www.faculty.ece.vt.edu/swe/oem
Led by Steven W. Ellingson at Virginia Tech, the goal of the Open Electromagnetics Project is to create no-cost openly-licensed content for courses in engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources.

Books in this Series
Electromagnetics, Volume 1 https://doi.org/10.21061/electromagnetics-vol-1
Electromagnetics, Volume 2 https://doi.org/10.21061/electromagnetics-vol-2

To express your interest in a book or this series, please visit http://bit.ly/vtpublishing-updates

Subject:
Engineering
Physics
Material Type:
Activity/Lab
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
05/26/2021
Engineering Physics I (PHYS 221)
Unrestricted Use
CC BY
Rating

This course covers the major topics of mechanics, including momentum and energy conservation, kinematics, Newton‰ŰŞs laws and equilibrium. The major emphasis is to develop critical analysis, problem solving and scientific reasoning skills by considering numerous different systems and interactions, solving problems and discussion. It uses a systematic approach based on modeling systems by application of basic physics principles, making assumptions, utilizing multiple representations (not just mathematical) in order to become proficient at problem solving. Lab work is required and is designed to help students develop a questioning approach to physical situations, distinguishing the significant behaviors from the less significant behaviors of a system under study.Login: guest_oclPassword: ocl

Subject:
Physics
Material Type:
Activity/Lab
Full Course
Homework/Assignment
Lesson Plan
Reading
Simulation
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
10/31/2011
Experiment Problem in Kinematics: How Much Does it Take to Win the Race?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

In this activity, students are presented with two objects that have different constant speeds and that will race each other. The students must determine which object will win the race, as well as either how much time elapses between the objects crossing the finish line.

Subject:
Physics
Material Type:
Activity/Lab
Simulation
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Kathleen Harper
Date Added:
12/08/2020
Experimental Physics I & II Junior Lab, Fall 2016
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subject:
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
and Technical Staff
Lecturers
Physics Department Faculty
Date Added:
01/01/2007
Fundamentals of Compressible Flow Mechanics
Read the Fine Print
Educational Use
Rating

This book deals with an introduction to the flow of compressible substances (gases). The main difference between compressible flow and almost incompressible flow is not the fact that compressibility has to be considered. Rather, the difference is in two phenomena that do not exist in incompressible flow. The first phenomenon is the very sharp discontinuity (jump) in the flow in properties. The second phenomenon is the choking of the flow. Choking is when downstream variations don't effect the flow. Though choking occurs in certain pipe flows in astronomy, there also are situations of choking in general (external) flow.

Subject:
Physics
Material Type:
Textbook
Provider:
Potto Project
Author:
Genick Bar-Meir
Date Added:
01/01/2012
Fundamentals of Mathematics
Unrestricted Use
CC BY
Rating

Fundamentals of Mathematics is a work text that covers the traditional topics studied in a modern prealgebra course, as well as topics of estimation, elementary analytic geometry, and introductory algebra. It is intended for students who (1) have had a previous course in prealgebra, (2) wish to meet the prerequisite of a higher level course such as elementary algebra, and (3) need to review fundamental mathematical concepts and techniques. NOTE: This collection is a work in progress, and the content has not yet been marked up in CNXML. You can download PDF copies of individual chapters in from their respective modules.

Subject:
Physics
Women's Studies
Material Type:
Full Course
Reading
Provider:
Rice University
Provider Set:
OpenStax CNX
Author:
Denny Burzynski
Date Added:
12/05/2019
How Do We Estimate Melt Density?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

SSAC Physical Volcanology module. Students build spreadsheets to estimate melt density at high temperatures and pressures from the thermodynamic properties of silicates.

Subject:
Mathematics
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Chuck Connor
Date Added:
12/08/2020
Introductory Physics: Building Models to Describe Our World
Conditional Remix & Share Permitted
CC BY-SA
Rating

This is an open-access textbook for calculus-based introductory physics courses. Anyone that complies with the license is welcome to modify and use this work for their own use, and we hope that you will choose to contribute. The textbook is specifically intended for a flipped-classroom approach, wherein students complete readings at home and the material is then discussed in class. The textbook thus contains questions and activities to engage readers. This text also includes a curriculum in experimental physics, detailing the scientific method and process, suggesting experiments to perform at home and in the lab, and has chapters that cover: writing and reviewing proposals, writing and reviewing reports, analyzing data, as well as an introduction to python. Finally, this textbook was written with many contributions from students! We hope that you may find it useful, and we are interested to know if you are using it!

Table of Contents:

The scientific method and physics
Comparing model and experiment
Describing motion in one dimension
Describing motion in multiple dimensions
Newton's Laws
Applying Newton's Laws
Work and energy
Potential energy and conservation of energy
Gravity
Linear momentum and the centre of mass
Rotational dynamics
Rotational energy and momentum
Simple harmonic motion
Waves
Fluid mechanics
Electric charges and fields
Gauss' Law
Electric potential
Electric current
Electric circuits
The magnetic force
Sources of magnetic field
Electromagnetic induction
The theory of Special Relativity
Appendix A: Vectors
Appendix B: Calculus
Appendix C: Guidelines for lab related activities
Appendix D: The python programming language

Subject:
Physics
Material Type:
Textbook
Author:
Emma Neary
Joshua Rinaldo
Olivia Woodman
Ryan D. Martin
Date Added:
12/08/2020
Lab: Measuring the Speed of Sound in Air (with uncertainty analysis)
Read the Fine Print
Rating

Students use a microphone and Vernier LabQuest to record the sound of a finger-snap echo in a 1-2 meter cardboard tube. Students measure the time for the echo to return to the microphone, and measure the length of the tube. Using their measurements, students determine the speed of sound. While other authors have produced similar labs, this version includes uncertainty analysis consistent with effective measurement technique as presented in the module Measurement and Uncertainty.

Subject:
Mathematics
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Peter Bohacek
Date Added:
12/08/2020
Light And Matter
Conditional Remix & Share Permitted
CC BY-SA
Rating

This is an introductory text intended for a one-year introductory course of the type typically taken by biology majors, or for AP Physics 1 and 2. Algebra and trig are used, and there are optional calculus-based sections. My text for physical science and engineering majors is Simple Nature.

Subject:
Physics
Material Type:
Textbook
Provider:
Light and Matter
Provider Set:
Light and Matter Books
Author:
Benjamin Crowell, Fullerton College
Date Added:
12/05/2019
Mechanics and Relativity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

In Mechanics and Relativity, the reader is taken on a tour through time and space. Starting from the basic axioms formulated by Newton and Einstein, the theory of motion at both the everyday and the highly relativistic level is developed without the need of prior knowledge. The relevant mathematics is provided in an appendix. The text contains various worked examples and a large number of original problems to help the reader develop an intuition for the physics. Applications covered in the book span a wide range of physical phenomena, including rocket motion, spinning tennis rackets and high-energy particle collisions.

Subject:
Physics
Material Type:
Textbook
Provider:
Delft University of Technology
Author:
Timon Idema
Date Added:
12/05/2019
Mechanics in Parallel
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Calculus-based physics textbook in support of lectures and other course materials created as part of the comprehensive parallel pedagogy curriculum. Other components of the curriculum can be found at http://sharedcurriculum.peteschwartz.net/.

Subject:
Physics
Material Type:
Textbook
Author:
Pete Schwartz
Date Added:
11/19/2021
Physical Science Laboratory Investigations : Physical Science Lab Manual
Unrestricted Use
CC BY
Rating

Lab manual for Introduction to Physics. This course is an introduction to the major concepts in physics, filled with relevant information of our scientific and technological age that every voting member of our society should know. We will cover both classical and modern physics; including physical principles concerning motion, gravity, heat, light, sound, electricity, magnetism, the atom, the nucleus, relativity, and quantum mechanics.

Subject:
Physics
Material Type:
Activity/Lab
Provider:
College of the Canyons
Author:
Teresa Ciardi
Date Added:
12/08/2020
Physics
Read the Fine Print
Educational Use
Rating

In this text, you will begin to explore the history of the formal study of physics, beginning with natural philosophy and the ancient Greeks, and leading up through a review of Sir Isaac Newton and the laws of physics that bear his name. You will also be introduced to the standards scientists use when they study physical quantities and the interrelated system of measurements most of the scientific community uses to communicate in a single mathematical language. Finally, you will study the limits of our ability to be accurate and precise, and the reasons scientists go to painstaking lengths to be as clear as possible regarding their own limitations.

Subject:
Physics
Material Type:
Full Course
Textbook
Provider:
Lumen Learning
Provider Set:
Candela Courseware
Date Added:
06/13/2019
Physics 132: What is an Electron? What is Light?
Unrestricted Use
CC BY
Rating

A second semester introductory physics course for life sciences students that looks to deepen students' understanding of biology and chemistry through physics all through the lens of understanding two of the most fundamental particles in the Universe: electrons and photons. The book begins with exploring the quantum mechanical nature of these objects to expand on what students have learned in chemistry and then proceeds to geometric optics (using the human eye as a theme), electrostatics (using membrane potentials), circuits (using the neuron), and finally synthesizing everything in a unit exploring the meaning of "light is an electromagnetic wave."

Subject:
Physics
Material Type:
Textbook
Author:
Edward J. Neth
E.F. Redish
John Eggebrecht
Julianne Zedalis
Klaus Theopold
Paul Flowers
Paul Peter Urone
Richard Langley
Roger Hinrichs
William R. Robinson
Date Added:
12/08/2020
Physics (PHYS 100 Non Science Majors)
Unrestricted Use
CC BY
Rating

This is a course for non-science majors that is a survey of the central concepts in physics relating everyday experiences with the principles and laws in physics on a conceptual level. Upon successful completion of this course, students will be able to: Describe basic principles of motion and state the law of inertia; Predict the motion of an object by applying Newtonęs laws when given the mass, a force, the characteristics of motion and a duration of time; Summarize the law of conservation of energy and explain its importance as the fundamental principle of energy as a –law of nature”; Explain the use of the principle of Energy conservation when applied to simple energy transformation systems; Define the Conservation of Energy Law as the 1st Law of Thermodynamics and State 2nd Law of Thermodynamics in 3 ways; Outline the limitations and risks associated with current societal energy practices,and explore options for changes in energy policy for the next century and beyond; Describe physical aspects of waves and wave motion; and explain the production of electromagnetic waves, and distinguish between the different parts of the electromagnetic spectrum.

Subject:
Physics
Material Type:
Assessment
Full Course
Reading
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
12/10/2019
Pre-Calculus Course Content, 11. Analytical Trigonometry, Applications of Sinusoids, Harmonic Motion
Conditional Remix & Share Permitted
CC BY-NC
Rating

Sinusoidal function, harmonic motion, periodic functions, applications.TMM 002 PRECALCULUS (Revised March 21, 2017)1. Functions: 1a. Analyze functions. Routine analysis includes discussion of domain, range, zeros, general function behavior (increasing, decreasing, extrema, etc.), as well as periodic characteristics such as period, frequency, phase shift, and amplitude. In addition to performing rote processes, the student can articulate reasons for choosing a particular process, recognize function families and anticipate behavior, and explain the implementation of a process (e.g., why certain real numbers are excluded from the domain of a given function).*

Subject:
Mathematics
Calculus
Trigonometry
Physics
Material Type:
Module
Author:
Ohio Open Ed Collaborative
Date Added:
11/02/2020
Pre-Calculus Course Content, 13. Vectors, Vectors in 2D
Conditional Remix & Share Permitted
CC BY-NC
Rating

Vectors - magnitude, direction, component form, trigonometric form, unit vector, algebra of vectors, applications,TMM 002 PRECALCULUS (Revised March 21, 2017)AdditionalOptional Learning Outcomes:2. Geometry: The successful Precalculus student can:2e. Interpret the result of vector computations geometrically and within the confines of a particular applied context (e.g., forces).Sample Tasks:The student can define vectors, their arithmetic, their representation, and interpretations.The student can decompose vectors into normal and parallel components.The student can interpret the result of a vector computation as a change in location in the plane or as the net force acting on an object.

Subject:
Higher Education
Mathematics
Calculus
Geometry
Physics
Material Type:
Module
Author:
Ohio Open Ed Collaborative
Date Added:
11/02/2020
Principles of Physics II Study Guides and Homework Materials
Unrestricted Use
CC BY
Rating

This set of study guides and homework materials was created for Principles of Physics II under a Round Six ALG Textbook Transformation Grant.

Subject:
Physics
Material Type:
Assessment
Homework/Assignment
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Author:
Dereth Drake
Francis Flaherty
Michael Holt
Date Added:
03/20/2018
Principles of Physics I Study and Homework Materials
Unrestricted Use
CC BY
Rating

This set of study guides and homework materials was created for Principles of Physics I under a Round Six ALG Textbook Transformation Grant.

Subject:
Physics
Material Type:
Homework/Assignment
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Author:
Dereth Drake
Francis Flaherty
Michael Holt
Date Added:
03/20/2018
Reflection and Absorption of Light
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

In this activity, students use a microcomputer connected to a light sensor and temperature probe to explore the reflection and absorption of radiation for different surfaces. Students follow instructions in this guided inquiry based lab and are then asked to design an experiment of their own to either test the reflectivity of sand, soils, water and other materials or to investigate the effect of different surface textures on reflectivity. On this Starting Point page, users can access information about the exercise's learning goals, context for use, teaching notes and tips, teaching materials, assessment ideas, references and topics covered.

Subject:
Physics
Material Type:
Activity/Lab
Data Set
Reading
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Starting Point (SERC)
Author:
Bob Mackay
Gretchen DeMoss
Richard Sorensen
Robyn Johnson
Date Added:
12/08/2020
Relativity Lite: A Pictorial Translation of Einstein’s Theories of Motion and Gravity
Conditional Remix & Share Permitted
CC BY-NC
Rating

Relativity Lite is designed for the General Astronomy sequence (PH 361-2U, SCI 315-6U) whose primary book glosses over Special Relativity and General Relativity while trying to explain the Cosmology that is based on those subjects. Relativity Lite translates the mathematical equations conventional relativity texts rely upon into pictures that are readily understood and contain within them the mathematical essentials. This book provides the comprehensive coverage needed to understand, in sufficient depth, these three linked areas of our reality.

Readers seeking this knowledge on their own, and those in other courses for nonscientists, may also find it helpful.

Subject:
Physics
Material Type:
Textbook
Provider:
Portland State University
Author:
Jack C. Straton
Date Added:
11/18/2021